The Inclusion Complex of Piromidic Acid with Dimethyl- β-cyclodextrin in Aqueous Solution and in the Solid State

NEVIN ÇELEBI*
Department of Pharmaceutical Technology, Faculy of Pharmacy, Gazi University, Etiler, Ankara, Turkey
OSAMU SHIRAKURA, YOSHIHARU MACHIDA, and TSUNEII NAGAI
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hoshi University, Ebara,
2-4-4I, Shinagawa-ku, Tokyo 142, Japan

(Received: 25 September 1986; in final form: 13 January 1987)

Abstract

Inclusion complex formation of piromidic acid (PA) with dimethyl- β-cyclodextrin (DM- β-CD) in aqueous solution and in the solid state was confirmed by the solubility method, differential scanning calorimetry (DSC) and proton nuclear magnetic resonance (${ }^{3} \mathrm{H}-\mathrm{NMR}$) spectroscopy. The apparent stability constant, K_{c}, of the complex was estimated to be $244 \mathrm{M}^{-1}$. The stoichiometry of the complex was given as the ratio $1: 2$ of PA to $\mathrm{DM}-\beta-\mathrm{CD}$. The dissolution rate of the $\mathrm{PA} / \mathrm{DM}-\beta-\mathrm{CD}$ complex was much greater than that of intact PA.

Key words: Piromidic acid/DM- β-CD inclusion complex, phase-solubility, DSC, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, dissolution profile.

1. Introduction

The $\alpha-, \beta$-, and γ-cyclodextrins are cyclic oligosaccharides consisting of six, seven, and eight glucose units respectively. Although they have found many applications [1] they have some undesirable properties. The limited application of cyclodextrins in the pharmaceutical field seems to be related to their relatively low aqueous solubility [2]. Recently, the chemically modified cyclodextrins have received considerable attention because their pharmaceutical properties and inclusion behaviors are different from those of natural cyclodextrins. For example, the methylated β-cyclodextrins, such as heptakis-(2,6-di- O-methyl)- β-cyclodextrin (DM- β-CD) and hepta-kis-($2,3,6$-tri- O-methyl)- β-cyclodextrin (TM- β-CD), are extremely soluble in water (more than $30 \mathrm{w} / \mathrm{v} \%$ at $25^{\circ} \mathrm{C}$), and they interact with a variety of drug molecules [3].

Piromidic acid (PA), 5,8-dihydro-8-ethyl-5-pyrrolidopyrido(2,3-d)pyrimidine-6carboxylic acid is a pyrido pyrimidine derivative, a congener of nalidixic acid. PA is widely used for its antibacterial activity against several gram negative pathogens. PA is very slightly water soluble $[4,5]$.

Cyclodextrin complexation has been extensively applied to enhance the solubility, dissolution rate, membrane permeability and bioavailability of slightly soluble drugs [6-9].

[^0]Thus, this investigation was carried out with the aim of improving the dissolution characteristics of piromidic acid.

2. Experimental

2.1. MATERIALS

Piromidic acid and the cyclodextrins ($\alpha, \beta, \gamma, \mathrm{DM}-\beta-\mathrm{CD}$) were supplied from Dainippon Pharmaceutical Co., and Nippon Shokuhin Kako Ltd., respectively. All other chemicals and solvents were of analytical reagent grade.

2.2. METHODS

2.2.1. Solubility Studies

The phase solubility diagram was obtained according to the method described by Higuchi, et al., [10]. Excess amounts of PA were added to buffer solutions at pH 7.4 (0.02 M Na -acetate) containing various concentrations of $\mathrm{DM}-\beta$-CD in a measuring flask. These were shaken at $37 \pm 0.5^{\circ} \mathrm{C}$ for 4 days. Following equilibration, the contents of the measuring flask were filtered through a Toyo TM-2 membrane filter $(0.45 \mu \mathrm{~m})$. A portion of the sample was adequately diluted and analyzed using a Hitachi 323 spectrophometer at 273 nm to determine the concentration of piromidic acid.

NEUTRALIZATION

METHOD

2) wash with water
3) dry in vacuo at room temp.

SAMPLE

[^1]
2.2.2. Preparation of Inclusion Complex

The preparative method is shown in Chart 1 . The stoichiometry of the complex prepared by the neutralization method was then analyzed and was found to be $1: 2$ (PA:DM- $\beta-\mathrm{CD}$).

The physical mixture of PA with DM- β-CD in a $1: 2$ molar ratio was prepared by simple blending in a ceramic mortar (10 min).

2.2.3. Differential Scanning Calorimetry Study

The differential scanning calorimetry was carried out using a Perkin-Elmer model 1B differential scanning calorimeter at a scanning speed of $8{ }^{\circ} \mathrm{C} / \mathrm{min}$ over the temperature range of 400 to 600 K .

2.2.4. ${ }^{1} H-N M R$ Spectroscopy Study

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded in deuterium oxide and sodium hydroxide- d_{1} solution (about $40 \% \mathrm{NaOD}$ in $\mathrm{D}_{2} \mathrm{O}$) using a JNM-FX 100 spectrometer operating at ${ }^{1} \mathrm{H}-99.65 \mathrm{MHz}$. The ${ }^{1} \mathrm{H}$-chemical shifts are given relative to external tetramethysilane within ± 0.002 ppm.

2.2.5. Dissolution Studies

Dissolution rates of piromidic acid from the inclusion complex and the physical mixture were measured by the method of Nogami et al.: [11]. The powdered sample (150 mesh) of the drug or its equivalent amount of the complex was put into 50 ml of buffer solutions at pH 7.4 in a dissolution cell which was kept at $37 \pm 0.5^{\circ} \mathrm{C}$ and the dissolution medium was stirred. At appropriate intervals, 1 ml samples were filtered through a membrane filter $(0.45 \mu \mathrm{~m})$, diluted and assayed spectrophotometrically.

3. Results and Discussion

3.1. PHASE SOLUBILITY DIAGRAM

The formation of the complex between PA and DM- $\beta-\mathrm{CD}$ was studied by a solubility method. Figure 1 shows an equilibrium phase solubility diagram obtained for the PA/DM- β-CD system in buffer solution at pH 7.4 . The plot shows a typical B_{s}-type solubility curve. The initial rising portion is followed by a plateau region and then decreases in total concentration of PA with precipitation of a microcrystalline complex at a high DM- β-CD concentration. The stoichiometry of the complex was found to be 1:2 (PA:DM- $\beta-\mathrm{CD}$) from the PA content.

The apparent stability constant, K_{c}, of the DM- β-CD complex was calculated to be $244 \mathrm{M}^{-1}$ from the initial straight line portion of the solubility diagram (Figure 1).

3.2. EVIDENCE OF INCLUSION COMPLEX FORMATIONS

As shown in Figure 2 the thermograms of PA and its physical mixture with DM- β-CD show an endothermic peak at around $316^{\circ} \mathrm{C}$ corresponding to the melting

Fig. 1. Phase solubility diagram of piromidic acid/DM- β-CD system in buffer solution $(0.02 \mathrm{M} \mathrm{Na}$ acetate) pH 7.4 at $37^{\circ} \mathrm{C}$.

Fig. 2. Differential scanning calorimetry curves at a scanning speed of $8{ }^{\circ} \mathrm{C} / \mathrm{min}$. 1, Intact PA; 2, Physical mixture of PA and DM- $\beta-\mathrm{CD} ; 3, \mathrm{PA} / \mathrm{DM}-\beta-\mathrm{CD}$ inclusion complex ($1: 2$ molar ratio).
point of the drug. In contrast, the endothermic peak was not observed in the case of the assumed inclusion complex.

Figure 3 shows the effect of DM- β-CD on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PA in $\mathrm{D}_{2} \mathrm{O}$. All of the proton signals of PA shifted to lower field with increasing amounts of DM- β-CD. Similar chemical shift changes have been observed for other drug-CD systems $[12,13,14]$. The chemical shifts of PA to low field might be induced by the diamagnetic anisotropy of particular bonds of DM- $\beta-C D$ and Van der Waals shifts [15].
a)

b)
d)

Fig. 3. Variation of ${ }^{l} \mathrm{H}$ chemical shifts of 0.01 PA with concentration of $\mathrm{DM}-\beta-\mathrm{CD}$ in 0.1 N NaOD at room temperature.

Fig. 4. Dissolution profiles of piromidic acid and its $\mathrm{DM}-\beta$-CD complex in pH 7.4 buffer solution at $37^{\circ} \mathrm{C}$. - Intact PA; O, Physical mixture of PA and DM- β-CD; $\diamond, \mathrm{PA} / \mathrm{DM}-\beta-\mathrm{CD}$ inclusion complex ($1: 2$ molar ratio). Each point is the mean of five determinations.

3.3. DISSOLUTION BEHAVIOR OF PIROMIDIC ACID AND ITS COMPLEXES

The relative rates of PA and its DM- $\beta-\mathrm{CD}$ complex in powder form are shown in Figure 4. It is evident that the PA/DM- β-CD complex dissolved much more rapidly than intact PA. The enhancement of the dissolution characteristics of PA by $\mathrm{DM}-\beta-\mathrm{CD}$ inclusion complexation may be due to improvements in solubility and wettability.

4. Conclusion

The above results suggest that complex formation with DM- β-CD may enhance the bioavailability of PA. Thus, the increased dissolution rate suggests that the PA/DM-β-CD complex may have utility in the development of fast dissolving dosage forms with improved bioavailability.

References

1. W. Saenger: Angew. Chem. Int. Ed. Engl. 19, 344 (1980).
2. J. Szejtli: The Cyclodextrins and their Inchusion Complexes, pp. 74, Akademiai Kiado, Budapest (1982).
3. K. Uekama: Pharm. Int. 6, 61 (1985).
4. S. Minami, T. Shono, and J. Matsumoto: Chem. Pharm. Bull. 19, 1426 (1971).
5. S. Minami, T. Shono, and J. Matsumoto: Chem. Pharm. Bull. 19, 1482 (1971).
6. Y. Hamada, N. Nambu, and T. Nagai: Chem. Pharm. Bull. 23, 1205 (1975).
7. K. Uekama, F. Hirayama, K. Esaki, and M. Inove: Chem. Pharm. Bull. 27, 76 (1979).
8. M. Nakano, K. Juni, and T. Arita: J. Pharm. Sci. 65, 709 (1976).
9. K. H. Froemming and I. Weyermann: Arzneim. Forsch. 23, 424 (1973).
10. T. Higuchi and K. A. Connors: Adv. Anal. Chem. Instrum. 4, 117 (1965).
11. H. Nogami, T. Nagai, and T. Yotsuyanagi: Chem. Pharm. Bull. 17, 499 (1969).
12. W. G. Craig, P. V. Demarco, D. W. Mathieson, L. Sounders, and W. B. Whalley: Tetrahedron 23, 2339 (1967).
13. H. Ueda and T. Nagai: Chem. Pharm. Bull. 28, 1415 (1980).
14. M. Otagiri, K. Uekama, and K. Ikeda: Chem. Pharm. Bull. 23, 188 (1975).
15. B. Howard, B. Linder, and M. T. Emerson: J. Chem. Phys. 3, 485 (1962).

[^0]: * Author for correspondence.

[^1]: Chart 1. Method for mass preparation of inclusion complex.

